QscR-Mediated Transcriptional Activation of Serine Cycle Genes in Methylobacterium extorquens AM1
نویسندگان
چکیده
منابع مشابه
QscR-mediated transcriptional activation of serine cycle genes in Methylobacterium extorquens AM1.
QscR, a LysR-type regulator, is the major regulator of assimilatory C1 metabolism in Methylobacterium extorquens AM1. It has been shown to interact with the promoters of the two operons that encode the majority of the serine cycle enzymes (sga-hpr-mtdA-fch for the qsc1 operon and mtkA-mtkB-ppc-mclA for the qsc2 operon), as well as with the promoter of glyA and its own promoter. To obtain furthe...
متن کاملQscR, a LysR-type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in Methylobacterium extorquens AM1.
A new gene, qscR, encoding a LysR-type transcriptional regulator that is a homolog of CbbR, has been characterized from the facultative methylotroph Methylobacterium extorquens AM1 and shown to be the major regulator of the serine cycle, the specific C1 assimilation pathway. The qscR mutant was shown to be unable to grow on C1 compounds, and it lacked the activity of serine-glyoxylate aminotran...
متن کاملGenetic organization of methylamine utilization genes from Methylobacterium extorquens AM1.
An isolated 5.2-kb fragment of Methylobacterium extorquens AM1 DNA was found to contain a gene cluster involved in methylamine utilization. Analysis of polypeptides synthesized in an Escherichia coli T7 expression system showed that five genes were present. Two of the genes encoded the large and small subunits of methylamine dehydrogenase, and a third encoded amicyanin, the presumed electron ac...
متن کاملIdentification of genes involved in the glyoxylate regeneration cycle in Methylobacterium extorquens AM1, including two new genes, meaC and meaD.
The glyoxylate regeneration cycle (GRC) operates in serine cycle methylotrophs to effect the net conversion of acetyl coenzyme A to glyoxylate. Mutants have been generated in several genes involved in the GRC, and phenotypic analysis has been carried out to clarify their role in this cycle.
متن کاملMetabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production
BACKGROUND Butanol is a promising next generation fuel and a bulk chemical precursor. Although clostridia are the primary industrial microbes for the fermentative production of 1-butanol, alternative engineered hosts have the potential to generate 1-butanol from alternative carbon feedstocks via synthetic metabolic pathways. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Bacteriology
سال: 2005
ISSN: 0021-9193,1098-5530
DOI: 10.1128/jb.187.21.7511-7517.2005